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A B S T R A C T   

Many mental illnesses share overlapping or similar clinical symptoms, confounding the diagnosis. It is important 
to systematically characterize the degree to which unique and similar changing patterns are reflective of brain 
disorders. Increasing sharing initiatives on neuroimaging data have provided unprecedented opportunities to 
study brain disorders. However, it is still an open question on replicating and translating findings across studies. 
Standardized approaches for capturing reproducible and comparable imaging markers are greatly needed. Here, 
we propose a pipeline based on the priori-driven independent component analysis, NeuroMark, which is capable 
of estimating brain functional network measures from functional magnetic resonance imaging (fMRI) data that 
can be used to link brain network abnormalities among different datasets, studies, and disorders. NeuroMark 
automatically estimates features adaptable to each individual subject and comparable across datasets/studies/ 
disorders by taking advantage of the reliable brain network templates extracted from 1828 healthy controls as 
guidance. Four studies including 2442 subjects were conducted spanning six brain disorders (schizophrenia, 
autism spectrum disorder, mild cognitive impairment, Alzheimer’s disease, bipolar disorder, and major de-
pressive disorder) to evaluate validity of the proposed pipeline from different perspectives (replication of brain 
abnormalities, cross-study comparison, identification of subtle brain changes, and multi-disorder classification 
using identified biomarkers). Our results highlight that NeuroMark effectively identified replicated brain net-
work abnormalities of schizophrenia across different datasets; revealed interesting neural clues on the overlap 
and specificity between autism and schizophrenia; demonstrated brain functional impairments present to 
varying degrees in mild cognitive impairments and Alzheimer's disease; and captured biomarkers that achieved 
good performance in classifying bipolar disorder and major depressive disorder.   
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1. Introduction 

In the neuroscience field, increasing data-sharing initiatives have 
accelerated the use of neuroimaging data to study brain disorders in the 
clinic (Poline et al., 2012; Poldrack and Gorgolewski, 2014; Woo et al., 
2017). Access to multi-site datasets affords unprecedented opportu-
nities to perform large-scale analysis across disorders. Brain functional 
connectivity and other related measures derived from functional mag-
netic resonance imaging (fMRI) data are powerful for characterizing 
brain organization and its abnormalities in brain disorders. Mounting 
evidence has supported that functional connectivity is a reliable in-
dicator of brain disorders for early diagnosis and treatments (Liu et al., 
2008; Whitfield-Gabrieli et al., 2009; Li et al., 2020). Many approaches 
have been utilized to capture neuroimaging features informative of 
functional connectivity, including region of interest (ROI) or seed de-
rived connectivity analysis (Tzourio-Mazoyer et al., 2002; Dosenbach 
et al., 2010), decomposition-based independent component analysis 
(ICA) (Calhoun et al., 2001; McKeown et al., 2003; Calhoun and Adali, 
2012), self-activation detection method such as amplitude of low fre-
quency fluctuation and regional homogeneity (Zang et al., 2004), as 
well as clustering techniques to group brain voxels (Du et al., 2012). 
ROI analysis and ICA are two commonly used strategies for studying 
functional connectivity. While ROI-based methods typically require 
fixed brain regions according to prior experience or knowledge (e.g. 
atlas), ICA, a data-driven method, is capable of capturing functional 
networks while retaining more single-subject variability (Yu et al., 
2017). ICA leverages the hidden spatial–temporal information to ex-
tract spatially independent components (ICs), each of which includes 
brain voxels sharing co-varying patterns. In addition, ICA performs 
component extraction and noise component removal simultaneously 
(Du et al., 2016), which might provide better signal-to-noise ratio 
(SNR) level for the functional connectivity estimation. ICA also enables 
separation of overlapping but distinct functional activity (Xu et al., 
2015), which cannot be achieved by using atlas-based analysis. To 
overcome the limitation of ICA that components from different subjects 
might not have spatial correspondence, group ICA methods were de-
veloped (Calhoun et al., 2001; Beckmann et al., 2009; Du and Fan, 
2013; Calhoun and de Lacy, 2017), which perform ICA on the group 
data to estimate the group-level components, and then utilize a back- 
reconstruction strategy to extract individual-level functional networks 
and associated time-courses. 

However, there is still a big challenge on group ICA that the iden-
tified components might vary across different group ICA runs due to the 
difference of the data properties, affecting its ability to replicate and 
compare findings across different studies. For example, Allen et al. 
(Allen et al., 2014) identified 50 intrinsic connectivity networks (ICNs) 
arranged into seven functional domains, while Marusak, Calhoun et al. 
(2017) characterized 52 ICNs sorted to three domains, despite they 
implemented the same model order in the group ICA. Such discrepancy 
hinders the direct comparisons across the results. Another potential 
problem of group ICA is that conventional ICA-based classification 
studies typically performed group ICA on all subjects’ fMRI data to 
make the resulting features consistent across training and testing sets 
(Demirci et al., 2008; Rashid et al., 2016). However, this operation can 
be biased, as the feature extraction should be independent from the 
testing data. Accordingly, it is essential to adopt an ICA approach to 
estimate brain network measures in an unbiased way that fully persist 
individual property while also being able to be compared across sub-
jects from various datasets/studies/disorders. 

From a clinical perspective, it is very important to evaluate sensi-
tivity and specificity as well as similarity and overlap between disorders 
that share clinically-overlapping symptoms using neuroimaging data. 
For example, both schizoaffective and bipolar disorders experience 
hallucinations and delusions that are typical features of schizophrenia 
(SZ) (Cosgrove and Suppes, 2013), which can make their clinical dif-
ferentiation difficult. As such, it would be beneficial to study the shared 

and unique brain impairments among them for better diagnosis and 
accurate treatments. Unfortunately, there is a paucity of studies that 
perform a direct comparison of symptom-related disorders and the 
validation of brain changes using large-sample datasets, probably due 
to the limited ability of analytic methods to characterize individual 
variability (Zuo et al., 2014) and reliability (Noble et al., 2019). Fur-
thermore, since the traditional diagnosis relying on symptom assess-
ment could be imperfect, it may be promising to develop new biologi-
cally-based types across the psychotic illnesses by combining the use of 
neuroimage-derived features (Marquand et al., 2016). Taking SZ and 
autism spectrum disorder (ASD) into account, although they are con-
ceptualized as distinct illnesses, they have also been revisited in recent 
years due to their shared phenotypic and genotypic expression 
(Hommer and Swedo, 2015). There have been studies that explore 
subtypes for mental disorders such as schizophrenia by performing 
clustering techniques on neuroimage-derived features (Yang et al., 
2014; Sun et al., 2015; Dwyer et al., 2018; Honnorat et al., 2019; Chand 
et al., 2020). Hence, effective methods that can accurately capture 
biologically meaningful subject-specific features that are still compar-
able across different individuals will benefit the refinement of current 
disorder categories. As more neuroimaging data are now available than 
ever before, ICA based method has a great potential to study the shared 
and unique brain network abnormalities across brain disorders. But the 
traditional ICA methods cannot be implemented directly on multiple 
datasets due to the inconsistency of IC estimations and arrangements 
across different ICA runs, which greatly influence the ability for com-
paring and validating the brain changes among disorders. Therefore, 
there is a need for advanced ICA techniques that can accurately esti-
mate subject-specific network features representing interpretable bio-
markers and achieve corresponding network features to accelerate the 
evaluation of biomarkers in terms of their generalizability, reproduci-
bility and relationship to other data. 

In this study, we propose a pipeline called NeuroMark, which le-
verages an adaptive-ICA technique such as group information guided ICA 
(GIG-ICA) (Du and Fan, 2013) or spatially constrained ICA (Lin et al., 
2010) to fully automate the estimation and labeling of individual-subject 
connectivity features, by incorporating an additional input of spatial 
network priors derived from independent large samples. We im-
plemented the NeuroMark pipeline to four studies involving six brain 
disorders and > 2400 subject samples, in order to validate its perfor-
mance from different aspects. We expected that replicable brain changes 
in patients with certain mental disorder can be found on independent 
datasets. We were interested in the cross-study comparison to link related 
mental disorders using NeuroMark. We also hoped that NeuroMark is 
able to extract subtle group difference across progressively developing 
disorders. Another concern was its ability in capturing effective bio-
markers for the classification on challengeable brain disorders. 

2. Materials and methods 

In this section, we first introduce the NeuroMark, and then apply it 
to four example studies to assess its capacity. 

2.1. NeuroMark 

The flowchart of NeuroMark is displayed in Fig. 1. First, ICs were 
estimated using different datasets of large-sample healthy controls 
(HCs). Second, reproducible ICNs were identified by matching and in-
specting the spatial maps of ICs from different datasets. Next, using the 
highly replicated ICNs as the network templates, an adaptive-ICA 
method (Du and Fan, 2013; Du et al., 2016; Salman et al., 2019) was 
applied to automatically estimate subject-specific functional networks 
and associated time-courses (TCs). Finally, different functional con-
nectivity features such as static or dynamic functional network con-
nectivity (FNC) were computed and then evaluated. The following de-
scribes the details. 
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2.1.1. Identifying reliable functional network templates 
The spatial network priors (i.e., the ICN templates) were obtained 

using two independent HC resting-state fMRI datasets from the human 
connectome project (HCP, http://www.humanconnectomeproject.org/ 
data/) and genomics superstruct project (GSP, https://www.nitrc.org/ 
projects/gspdata). GSP dataset was preprocessed using statistical 
parametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/). 
Rigid body motion correction was performed to correct subject head 
motion, followed by the slice-timing correction to account for timing 
difference in slice acquisition. The fMRI data were subsequently warped 
into the standard Montreal Neurological Institute (MNI) space using an 
echo planar imaging (EPI) template and were resampled to 
3 × 3 × 3 mm3 isotropic voxels. The resampled fMRI images were 
further smoothed using a Gaussian kernel with a full width at half 
maximum (FWHM) = 6 mm. For the HCP dataset, we downloaded the 
preprocessed data from online and resliced them to the same spatial 
resolution (3 × 3 × 3 mm3) with the preprocessed GSP data using 
SPM12. More details in terms of the preprocessing on HCP data can be 
found online (http://www.humanconnectomeproject.org/data/). 

We performed quality control (QC) for all the preprocessed data. 

The detailed QC procedure can be found in the supplementary mate-
rials. In total, 1005 individuals from the GSP dataset and 823 in-
dividuals from the HCP dataset were chosen after QC for further ana-
lysis. Please see Table S1 for the age, gender and motion information. 
For the GSP data, all imaging data were captured on Siemens 3T 
MAGNETOM Tim Trio MRI systems using the vendor-supplied 12- 
channel phase-array head coil. Although five different scanners were 
used to acquire data, each scanner used the exact same sequences, 
parameters, and instructions. The HCP subjects were scanned on a 
customized Siemens 3T “Connectome Skyra”, using a standard 32- 
channel Siemens receive head coil and a “body” transmission coil de-
signed by Siemens specifically for the smaller space available using the 
special gradients of the Connectome scanners. The GSP and HCP da-
tasets have different temporal resolution (TR for GSP data = 3 s and TR 
for HCP data = 0.72 s). Among the 1005 selected subjects in the GSP 
dataset, 935 subjects are right handedness, 61 subjects are left hand-
edness, and 9 subjects use both hands. The mean education year of 
selected 1005 subjects is 14.45 years, with the standard deviation as 
1.91. 612 subjects are white and not Hispanic, and 393 subjects are 
other race/ethnicities. Among the selected 823 subjects in the HCP 

Fig. 1. Schematic flowchart of the NeuroMark pipeline. Step 1: Calculate group-level independent components (ICs) from two independent datasets, human con-
nectome project (HCP) and genomics superstruct project (GSP) datasets, respectively. Step 2: Match ICs using correlations between their spatial maps and then 
identify highly replicated intrinsic connectivity networks (ICNs) as the network templates. Step 3: Calculate the individual-level ICNs and their related time courses 
(TCs) by taking the network templates as prior information in adaptive-ICA. Functional connectivity features such as static and dynamic functional network con-
nectivity (FNC) can be obtained and then compared across datasets, studies, and disorders. 
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dataset, 747 subjects are right handedness, 74 subjects are left hand-
edness, and 2 are both handedness. The mean education year of 823 
subjects is 14.88 years, with the standard deviation as 1.82. 549 sub-
jects are white and and not Hispanic, and 274 are other race/ethni-
cities. We used the two datasets with different scanning information, 
preprocessing procedures, and demographic distributions, as we 
wanted to capture the functional networks that are reproducible across 
different conditions so that the selected network templates can be re-
liable for various independent data. 

We performed ICA on the GSP and HCP datasets separately to yield 
reliable ICs. First, principal component analysis (PCA) was performed 
on each individual subject to reduce fMRI data to 110 principal com-
ponents (PCs), which preserved > 95% variance of the original data. 
Then, the individual-level PCs of each subject were concatenated across 
different subjects (1005 subjects for GSP or 823 subjects for HCP) and 
reduced into 100 PCs via another PCA at the group level. Next, the 
Infomax algorithm (Bell and Sejnowski, 1995) was applied to decom-
pose the 100 PCs into 100 ICs. This procedure was repeated 100 times 
using the ICASSO technique (Himberg and Hyvarinen, 2003), in which 
the best ICA run was selected to generate 100 reliable ICs for each 
dataset (Ma et al., 2011). In our study, we computed the skewness of 
each estimated IC and flipped the IC if its skewness was negative. 

Two groups of ICs were matched using a greedy spatial correlation 
analysis and then inspected to find reproducible ICNs as the network 
templates. A similarity matrix C (size: 100 × 100) was obtained by 
computing the absolute value of Pearson correlation coefficients be-
tween the spatial maps of ICs from GSP and that from HCP. Based on 
the matrix C, the pair of ICs with the maximum correlation value were 
selected and considered as the first-matched IC pair. If their original 
correlation value was negative, one of the ICs was sign-flipped. After 
identifying a matched IC pair, the correlation values related to them in 
the matrix C were set to zero, resulting in a new similarity matrix Cnew. 
As such, the matching procedure was repeated continually on the up-
dated correlation matrices until the final matched IC pair was found. IC 
pairs were considered to be reproducible if they showed a higher spatial 
correlation than a given threshold 0.4, a more strict threshold than 
previous work (Smith et al., 2009). Next, we characterized a subset of 
these reproducible ICs as ICNs if they exhibited peak values in gray 
matter, had low spatial overlap with known vascular, ventricular, mo-
tion and other artifacts, and exhibited dominant low-frequency fluc-
tuations in their TCs. Five fMRI experts carefully inspected those mat-
ched ICs, then labeled meaningful ICNs and assigned them to different 
functional domains. ICs with more than three votes were identified as 
meaningful ICNs. This resulted in two groups of highly similar ICNs 
from the HCP and GSP datasets. Finally, the ICNs captured from the 
GSP dataset were taken as the network templates as their spatial maps 
were smoother with less noises. Hereinafter, we use N to denote the 
number of network templates. 

2.1.2. Estimating subject-specific brain functional networks and relevant 
connectivity features 

Based on the fMRI data of each subject, the subject-specific ICNs 
were computed by adaptive-ICA, an approach that automatically and 
adaptively estimates individual-level independent components using 
the prior network templates as guidance. Two ICA algorithms (Lin 
et al., 2010; Du and Fan, 2013) available in the group ICA of fMRI 
toolbox (GIFT) (http://trendscenter.org/software/) can be used for 
adaptive-ICA. In this paper, we extended GIG-ICA (Du and Fan, 2013) 
for the adaptive-ICA due to its superiority, by taking the obtained 
network templates and each subject's fMRI data as input. Basically, 
there are two objective functions in GIG-ICA, one of which is to opti-
mize the independence of networks, while the other is to optimize the 
comparability between one subject-specific network and its related 
network template. Using simulations, our previous studies (Du and Fan, 
2013; Du et al., 2016) demonstrated that subject-specific independent 
components can be obtained with higher accuracy in GIG-ICA 

compared to other group ICA methods. Using test–retest fMRI data, 
GIG-ICA yielded higher intra class coefficients (ICCs) in the estimated 
networks than the independent vector analysis (IVA) (Du et al., 2017). 
Our another work (Salman et al., 2019) supported that GIG-ICA can 
result in higher classification accuracy than the dual regression method 
in distinguishing schizophrenia patients from healthy controls. In the 
original GIG-ICA algorithm, group-level components used as guidance 
are computed from its own group data (Du and Fan, 2013; Du et al., 
2016). In this paper, we used the labeled and ordered network tem-
plates validated from two independent datasets as the spatial priors for 
guidance in estimating subject-specific networks. 

The multiple-objective optimization denoted by (1) represents how 
one subject-specific network can be estimated using a network template 
as guidance. 
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presents the estimated corresponding network of the kth subject, where 
Xk is the whitened Xk representing fMRI data matrix of the kth subject. 
Here, wl

k is the unmixing column vector, which is to be solved in the 
optimization functions. The first function is for optimizing the in-
dependence measure of Sl

k, which is reflected using J(S )l
k , i.e., the ne-

gentropy of Sl
k. Here, v is a Gaussian variable with zero mean and unit 

variance; G( ) is a nonquadratic function. The second function F(S )l
k is 

used to measure the correspondence between Sl and Sl
k. E[] denotes the 

expectation of variable. A linear weighted sum method is applied to 
combine the two objective functions (Du and Fan, 2013), with the 
weights as 0.5, in order to solve the optimization problem. Our method 
can automatically result in Z-scored networks. It is also worth pointing 
out that the resulting components (networks) will be very stable across 
different runs using our method. Thus, for each subject, all N subject- 
specific networks corresponding to the N network templates and their 
relevant TCs are estimated from the data. In summary, using Neuro-
Mark, all subject-specific functional networks will not only be com-
parable across different datasets/studies/disorders as well as between 
previously analyzed data and new coming impendent data, but also 
show subject-unique characteristics. 

Using NeuroMark, multiple network features can be obtained, in-
cluding spatial functional networks, functional connectivity between 
networks, graph measures of functional organization, and frequency 
information of networks’ fluctuations, from both static and dynamic 
perspectives. Taking functional network connectivity (FNC) as an ex-
ample, static FNC (sFNC) can be obtained by computing the Pearson 
correlations between TCs of ICNs to yield a sFNC matrix reflecting the 
interaction between any two networks. While the spatial map of each 
ICN reflects intra-connectivity within brain functional network, sFNC 
matrix represents inter-connectivity strengths between different ICNs. 
Dynamic FNC (dFNC) can also be investigated through a sliding time 
window approach (Hutchison et al., 2013; Allen et al., 2014), in which 
a tapered window obtained by convolving a rectangle with a Gaussian 
is often used to segment the entire TC of each ICN into several short 
TCs. For each window, the connectivity matrix is computed using the 
windowed TCs of ICNs to measure the functional connectivity between 
ICNs within the window. Thus, for each subject, the connectivity matrix 
of each window can be concatenated to form an array (size: × ×N N T, 
here N is the number of ICNs and T is the number of windows), re-
presenting the temporal changes of FNC along time. 

2.2. Studies for validating NeuroMark 

In the paper, we performed four different studies to fully evaluate 
our proposed NeuroMark pipeline from different angles. Totally, we 
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included resting-state fMRI data from 2442 scans after the QC proces-
sing for the experiments. Table 1 summarizes the age, gender, and 
motion information for each of the four studies. Study 1 focused on the 
investigation of the reproducibility of brain functional connectivity 
abnormalities using independent SZ data from the Function Biomedical 
Informatics Research Network (FBIRN) and the Maryland Psychiatric 
Research Center (MPRC). We hoped that reproducible brain changes 
can be found between the two datasets. In study 2, we identified the 
functional changes in ASD using the release 1 of Autism Brain Imaging 
Data Exchange (ABIDEI) data, and then linked the results to study 1, 
aiming to show the ability of NeuroMark in the cross-disorder com-
parison. We were interested in similar and unique changes between SZ 
and ASD. In study 3, we worked on the dynamic connectivity analysis 
on progressively developing disorders, using data of Alzheimer's disease 
(AD) patients, mild cognitive impairment (MCI) patients, and HCs from 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, in order to 

show the ability of NeuroMark in exploring subtle group differences. 
NeuroMark was expected to be able to reveal a progressive change from 
HC to MCI to AD. In study 4, our goal was to verify the classification 
capability in distinguishing challengeable brain disorders ( bipolar 
disorder (BD) and major depressive disorder (MDD)) using network 
features estimated from NeuroMark. 

In the following studies, NeuroMark was applied to each subject's 
fMRI data to extract the subject-specific ICNs and their related TCs. 
Since the network templates were used to guide the estimation of the 
subject-specific ICNs, we investigated if the correspondence between 
the network templates and the subject-specific ICNs as well as the 
correspondence between the ICNs from different subjects can be well 
maintained, and going further if the unique characteristics of each 
subject's ICNs still were preserved. To measure the correspondence 
between the network templates and the subject-specific ICNs, for each 
subject we first computed the spatial similarity between each network 

Table 1 
The demographic and motion information of the datasets used in studies 1–4.   

Note: Two-sample t-tests and analysis of variance (ANOVA) were used to examine the group differences in the age, motion translations and rotations. Chi-square test 
was performed to examine the gender difference.  
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template and the estimated ICN using Pearson correlation coefficients, 
and then averaged the correlation coefficients across all ICNs to reflect 
its template-ICN similarity. We investigated if the template-ICN simi-
larity shows reliability across different studies and groups by sum-
marizing the template-ICN similarity for all subjects in each dataset 
(e.g. both HC and SZ subjects in FBIRN) and for the subjects in each 
group (e.g. HC or SZ subjects in FBIRN). In addition to the template-ICN 
similarity, we also assessed the similarity across the subject-specific 
ICNs to verify that the network patterns can be subject-unique mean-
while they are still corresponding (comparable) across subjects. For the 
ICNs guided by one network template, we computed Pearson correla-
tion coefficients across those subject-specific ICNs, and then averaged 
the coefficients to reflect the inter-subject similarity of the ICN. The 
mean of the inter-subject similarity across all ICNs was used to sum-
marize the inter-subject ICN similarity. We also demonstrate the inter- 
subject ICN similarity for all subjects in each dataset and for the sub-
jects in each group to reflect the data variation. 

2.2.1. Study 1: Investigating static functional network connectivity (sFNC) 
abnormalities in schizophrenia: A replication study 

In the first study, we assessed the ability of NeuroMark to identify 
reproducible disease abnormalities across different datasets. 
NeuroMark was implemented to two independent SZ datasets. The 
discovery dataset was from the FBIRN including 210 SZ patients and 
195 HCs. The replication dataset was collected at the MPRC, including 
251 SZ patients and 327 HCs. Both datasets was preprocessed using the 
same preprocessing pipeline used for the GSP dataset. Subject inclusion 
criteria was also similar, which required participants with head mo-
tion < = 3° and < = 3 mm and with functional data providing near 
full brain successful normalization. We retained 137 SZ patients and 
144 HCs in the FBIRN dataset, and 150 SZ patients and 238 HCs in the 
MPRC dataset for the further analysis. 

We applied NeuroMark to each dataset to extract subject-specific 
ICNs and their related TCs. The following steps were done to remove 
noise sources of TCs before the sFNC computation, including 1) de-
trending linear, quadratic, and cubic trends; 2) conducting multiple 
regressions of the six realignment parameters and their temporal deri-
vatives; 3) de-spiking to detect and remove outliers; and 4) band-pass 
filtering with [0.01–0.15] Hz. Then, a sFNC matrix was obtained for 
each subject via computing Pearson correlation coefficients between 
the post-processed TCs. The strength of each sFNC (i.e. each element in 
the sFNC matrix) was transformed to Fisher’s Z-score. After that, for 
each sFNC, we investigated difference in the connectivity strength be-
tween HCs and SZ patients by performing a two-tailed two-sample t-test 
(p  <  0.05 with Bonferroni correction) for the FBIRN and MPRC da-
tasets separately, after controlling the age, gender and site effects (see 
the supplementary materials). Finally, we compared the significant 
sFNC difference identified from the two datasets to highlight re-
producible functional connectivity abnormalities in SZ. 

2.2.2. Study 2: Investigating the common and unique static functional 
network connectivity (sFNC) alterations in autism spectrum disorder (ASD) 
and SZ: multi-study comparison 

Since we obtained the brain functional network templates using 
data from large-sample population independent from the data being 
analyzed, it is feasible to link multiple independent studies using 
NeuroMark. In this study, we investigated sFNC changes in ASD com-
pared to HCs, and then compared the results with those captured in 
study 1 for searching the common and unique impairments between SZ 
and ASD. The ASD data was from ABIDEI, provided by the National 
Institute of Mental Health. The ABIDEI dataset includes 539 individuals 
with ASD and 573 HCs. We performed the same preprocessing and 
subject selection as introduced in the study 1. Consequently, 398 ASD 
individuals and 471 age-matched HCs in the ABIDEI dataset were re-
mained. 

Similar to study 1, Neuromark was applied to the ABIDEI dataset to 

estimate ICNs and corresponding TCs for each subject. Then, we in-
vestigated the HC vs. ASD differences on sFNC measures using two- 
tailed two-sample t-tests (p  <  0.05 with Bonferroni correction). With 
the help of NeuroMark, we compared the symptom-related disorders 
(i.e. SZ and ASD) in terms of their overlapping and unique sFNC al-
terations based on the results from study 1 and the results obtained 
from the above analyses. The age, gender, and site effect were regressed 
out before the statistical analyses (see the supplementary materials). In 
addition, for the commonly changed FNCs between SZ and ASD, we also 
computed the correlation between FNC measures and clinical symp-
toms. For SZ, the symptoms scores included the positive and negative 
syndrome scale (PANSS) positive score and PANSS negative score. 
Symptoms of ASD included autism diagnostic observation schedule 
(ADOS) total score and social responsiveness scale (SRS). The sig-
nificance level was set to p  <  0.05 for the correlation analyses. 

2.2.3. Study 3: Investigating the dynamic functional network connectivity 
(dFNC) abnormalities in Alzheimer's disease (AD) and mild cognitive 
impairment (MCI) 

In this study, we aimed to show that NeuroMark can effectively 
capture subtle differences in dynamic functional network connectivity 
(dFNC) features among progressively developing brain disorders. The 
dFNC changes were compared among Alzheimer's disease (AD) pa-
tients, mild cognitive impairment (MCI) patients, and HCs. We used the 
publicly available ADNI dataset. Using the same preprocessing and 
subject selection procedures, we had a total of 838 scans (104 scans of 
AD patients, 470 scans of MCI patients, and 264 scans of HCs) for 
analysis. 

For each scan, we estimated dFNC using a sliding window approach 
(Allen et al., 2014). Since the fMRI data have different temporal re-
solutions, we performed interpolation on the TCs with longer repetition 
time (TR) to construct new TCs with the same temporal resolution as 
those data with smallest TR and the same length of data. This procedure 
helped to control the potential impacts on the dynamic analysis caused 
by the different temporal resolutions. In this paper, the tapered window 
was obtained by convolving a rectangle (window size = 40 
TRs = 24.3 s) with a Gaussian (σ = 3) function. This window was slid 
in steps of 1 TR, resulting in total T = 468 windows for yielding dFNC 
matrices. 

A K-means clustering analysis (Allen et al., 2014) was implemented 
on the time-varying connectivity patterns to capture occurred con-
nectivity states in time and across subjects. L1 norm was used as the 
distance function with the upper triangular ( ×N (N 1)/2) values in 
the dFNC matrices as features. The optimal number of clusters was 
determined as five by the elbow criterion, which was within a reason-
able range (4 ~ 7) and consistent with the previous dFNC studies on 
different brain disorders (Rashid et al., 2014; Abrol et al., 2017; Du 
et al., 2018; Fu et al., 2018a, 2018b, 2019). 

Regarding each connectivity state, we computed its fraction rate of 
occurrence for each subject by computing the percentage of the number 
of time windows assigned to the state in the number of total windows. 
To investigate group differences in the fraction rate of each state, 
analysis of variance (ANOVA) was performed after regressing out age 
and gender. If the ANOVA resulted in a significant diagnosis effects, a 
generalized linear model (GLM) including age and gender was con-
ducted to examine the group difference between any paired groups. 

2.2.4. Study 4: Classification between bipolar disorder (BD) and major 
depressive disorder (MDD) 

In study 4, our goal was to test the ability of NeuroMark for cap-
turing functional network markers that can be used for the classification 
of symptom-related disorders. We focused on classifying BD and MDD, 
both of which can exhibit strong depressive symptoms and are difficult 
to distinguish in clinical diagnosis. Resting-state fMRI data including 32 
patients with BD Type I and 34 patients with MDD were used for the 
two-group classification. More details of the subject information can be 
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found in a previous study (Osuch et al., 2018). 
Using NeuroMark, the subject-specific ICNs and TCs were estimated 

for each subject. Due to cerebellum being partially missing in the 
scanned data, the cerebellar ICNs were not estimated in this study. In 
order to evaluate if the spatial maps of ICNs captured by the NeuroMark 
pipeline can be powerful biomarkers to classify BD and MDD patients, 
we used an unbiased 10-fold cross-validation framework, in which nine 
of ten folds were used as the training data and the remaining fold was 
used as the testing data successively. Consistent to the previous work 
(Osuch et al., 2018), we applied support vector machine with sigmoid 
kernel for classification. The feature selection and model training were 
performed only based on the training data. 

Feature selection plays a key role in classification, especially for the 
high-dimensional network measures. In this work, we extracted the 
most discriminative ICN from each functional domain, and then com-
bined the discriminative ICNs from all functional domains as features. 
In order to find the most discriminative ICN for each domain, we used 
an inner 10 times of 10-fold cross-validation procedure within the 
training set based on a forward ICN-selection technique. Basically, the 
ICNs were added one by one based on the classification accuracy on the 
inner testing data, evaluated using the model built using the inner 
training data. Then, for each run in the inner 10-fold procedure, the 
optimal ICN combination corresponding to the highest classification 
accuracy can be found. The ICN with the highest occurring frequency in 
the optimal ICN combination sets (across different repeats) was vali-
dated as the most discriminative ICN for that domain. After that, the 
combined discriminative ICNs from different domains were used as 
features to train a model using the outer training data. While the pre-
vious study (Osuch et al., 2018) used group information from its own 
data, the subject-specific ICN features computed using NeuroMark were 
more unbiased. Fig. 2 shows our classification method. 

To quantify the classification results, we evaluated multiple mea-
sures including the individual class accuracy, individual class precision, 
overall accuracy, balanced accuracy, and balanced precision (Cuadros- 
Rodriguez et al., 2016) based on the predicted and diagnosis labels. 
Different measures reflect the results from different angles. The in-
dividual class accuracy reported the ratio of correctly classified subjects 
of a particular class to the total number of subjects in the class. The 
individual class precision was defined as the number of correctly clas-
sified subjects of a particular class divided by the total number of 
subjects predicted as the class. The overall accuracy was computed as 

the ratio of correctly classified subjects of all classes to the total number 
of subjects of all classes. Additionally, we also computed the mean of 
individual class accuracies, called as the balanced accuracy. The in-
dividual class precision values were also averaged to represent the 
balanced precision. For each measure, we show the results from dif-
ferent repeats using both boxplot and violinplot, respectively. 

3. Results 

3.1. Reliable network templates 

Fig. 3 displays the 53 ICNs from the GSP dataset that were set as the 
network templates in the NeuroMark pipeline. The correlation matrix 
computed using the 53 matched ICNs from the two datasets is shown in  
Fig. 4, indicating that these ICNs are highly reproducible between the 
GSP and HCP datasets. Regarding the original 100 group-level in-
dependent components, there were 81 components matched between 
the two datasets with correlation  >  0.4, 58 components with corre-
lation  >  0.6, and 18 components with correlation  >  0.8, as shown in  
Fig. 5(A). If only considering the meaningful ICNs, there were 53 ICNs 
with correlation  >  0.4, 44 ICNs with correlation  >  0.6, and 16 ICNs 
with correlation  >  0.8, as shown in Fig. 5(B). It is worth pointing out 
that the spatial correlation reflecting the similarity between the mat-
ched two groups of functional networks or components in Figs. 4 and  
5(A)–(B) were obtained by using the whole-brain voxels (i.e. 60,358 
voxels), since those voxels were taken as input for NeuroMark. If the 
correlation was calculated only using the important voxels with positive 
Z-scores in each ICN, the correspondence (represented by correlation) 
between the two groups of ICNs would be higher (see Fig. 5(C)). The 
positive Z-scores in each ICN represented the voxels that mostly con-
tributed to the ICN, because that the skewness of each ICN was changed 
to be positive, as mentioned in the section 2.1.1. 

Those ICNs were arranged into seven functional domains according 
to their functional and anatomical roles (Allen et al., 2014), including 
the subcortical (SC: 5 ICNs), auditory (AU: 2 ICNs), sensorimotor (SM: 9 
ICNs), visual (VI: 9 ICNs), cognitive control (CC: 17 ICNs), default mode 
(DM: 7 ICNs) and cerebellar (CB: 4 ICNs) domains. The detailed com-
ponent labels and peak coordinates are provided in Table 2. 

Fig. 2. The pipeline of classifying BD and MDD patients using brain functional networks (i.e. ICNs) as features, in which an unbiased 10-fold cross-validation 
procedure was applied. 

Y. Du, et al.   NeuroImage: Clinical 28 (2020) 102375

7



3.2. Subject-specific ICNs with both correspondence and uniqueness 

As mentioned in the section 2.2, we assessed the correspondence 
and uniqueness of the subject-specific ICNs. Fig. 6(A) and (B) show the 
similarity between the network templates and the subject-specific ICNs 
for all subjects in each dataset (e.g. FBIRN) and the subjects in each 
group of dataset (e.g. FBIRN-SZ), using boxplots. It is observed from  
Fig. 6(A)–(B) that the mean template-ICN similarity across different 
subjects was close to 0.5, which met our expectation designed in the 
objective function optimization. Our results support that the template- 
ICN correspondence was well maintained. Furthermore, the corre-
spondence measure was relatively reliable across different datasets and 
groups, indicating that our method is effective. Fig. 6(C) and (D) de-
monstrate the inter-subject ICN similarity for all subjects in each da-
taset and the subjects in each group, respectively. The mean of the 
inter-subject similarity across different ICNs is shown using a bar. The 
results suggest that the subject-specific ICNs presented unique patterns 
while they were still comparable across subjects. 

3.3. Validity of NeuroMark 

3.3.1. Study 1: Reproducible static functional network connectivity (sFNC) 
alterations in schizophrenia 

Fig. 7(A) and (D) show the mean sFNC matrices across subjects for 
the FBIRN and MPRC datasets, respectively. The sFNC matrix showed a 
similar pattern between the two datasets, indicating the comparability 
of connectivity measures computed by NeuroMark. Regarding the 
FBIRN dataset, Fig. 7(B) and (C) display the T-values obtained from 
two-sample t-tests and the significant group differences after the mul-
tiple comparisons correction, respectively. Similar group differences 
were found using the MPRC dataset, as shown in Fig. 7(E) and (F), 
indicating reproducible SZ-related functional connectivity abnormal-
ities captured by the NeuroMark framework. 

Regarding both datasets, the brain functional abnormalities in SZ 
were mainly located in the connectivity between the SC and CB do-
mains, between the SC and AU domains, as well as between the SC and 
SM domains. Furthermore, the common significantly changed func-
tional connectivity was evaluated based on Fig. 7(C) and (F). Compared 
to HC, SZ showed decreased connectivity strength between thalamus 
and cerebellum, caudate and cerebellum, subthalamus and cerebellum, 
but increased strengths between thalamus and postcentral gyrus, 

Fig. 3. Visualization of the identified network templates, which were divided into seven functional domains based on their anatomical and functional properties. In 
each subfigure, one color in the composite maps corresponds to an ICN. 
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thalamus and superior temporal gyrus, caudate and postcentral gyrus, 
caudate and superior temporal gyrus, as well as subthalamus and su-
perior temporal gyrus. Fig. 7(G) demonstrates that although the FBIRN 
dataset showed slightly higher mean functional connectivity strengths 
than the MPRC dataset, their common impaired connectivity in SZ 
patients was highly close. Taken together, our results suggest that 
NeuroMark can help to identify functional connectivity abnormalities 
that are validated across datasets. 

3.3.2. Study 2: Autism and schizophrenia show common and also unique 
static functional network connectivity (sFNC) alterations 

For ABIDEI data, the mean sFNC matrix computed by averaging the 
sFNC matrices across different subjects (Fig. 8(A)) showed a similar 
connectivity pattern as that in study 1, again demonstrating that the 
network features computed using NeuroMark are corresponding and 
comparable. Statistical analysis showed significant group differences 
between HC and ASD primarily involving the SC, CB, AU and SM do-
mains, as shown in Fig. 8(B) and (C). 

While our findings in terms of ASD alterations could stand on its 
own as a result, we were interested in learning additional information 
by linking study 1 and the above-mentioned analysis. By comparing 
their results, we found that SZ and ASD had significant overlapping 
brain abnormalities between SC domain and AU/SM/CB domains. 
Specifically, we identified nine atypical sFNC overlapping between SZ 
and ASD. Among the nine overlaps between SZ and ASD impairments, 
four functional connectivity showed decrease between cerebellum and 
thalamus (or caudate); four functional connectivity showed increase 
between superior temporal gyrus and subcortical regions; and the re-
maining one showed increase between postcentral gyrus and thalamus 

(Fig. 8(D)). Two of the nine commonly changed FNCs showed sig-
nificant correlations (p  <  0.05) with the symptoms in one of the two 
disorders (Fig. 8(E)–(F)), while they also showed a similar correlation 
pattern in the other disorder. Furthermore, the correlations accorded 
with the group differences. Taking the connectivity between IC 69 from 
sub-cortical domain and IC 21 from auditory domain for an instance, 
the correlation between the FNC measures and ADOS scores of AD 
patients was positive and the T-value of HC vs. ASD was < 0, sup-
porting greater FNC strengths in this connectivity could be associated 
with severer ASD condition. SZ and ASD also had their unique brain 
abnormalities in sFNC. For example, SZ showed atypical low functional 
connectivity within the VI domain and the ASD showed changed 
functional connectivity within CC domain and decreased functional 
connectivity within DM domain. 

In summary, our NeuroMark framework can identify functional 
connectivity abnormalities that are comparable across different brain 
disorders, which would provide great convenience for searching the 
unique and common brain changes in multiple brain disorders and thus 
further advance our understanding of the underlying interrelationships 
between them. 

3.3.3. Study 3: Mild cognitive impairment (MCI) demonstrates intermediate 
dynamic functional network connectivity (FNC) changes between healthy 
controls (HCs) and Alzheimer's disease (AD) 

The identified reoccurring brain states with obviously distinct con-
nectivity patterns were displayed in Fig. 9. Specifically, the state 2 
which accounts for  >  50% of all windows resembles the sFNC pat-
terns; the state 1 shows negative connectivity strengths between SM 
and VI; and the state 3 in contrast shows a strong positive connection 

Fig. 4. The spatial correlation matrix between the matched two groups of functional networks. It is seen that the diagonal values are high, indicating the selected 
network templates are common and reproducible between the GSP and HCP datasets. 
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between SM and VI. The statistical analysis revealed that compared to 
HCs, AD patients had a significantly increased occurrence in those 
weakly-connected dFNC states (i.e. state 2 and state 5) but decreased 
occurrence in those states with strong connectivity pattern (i.e. state 1 
and state 3, which showed strong correlated and anticorrelated con-
nectivity strengths). Although there was no significant group difference 
in the state occurrences between MCI and HC/AD, MCI showed a si-
milar changing trend as AD but with a relatively weaker degree (Fig. 9, 
upper panel). When dividing the MCI group into early MCI (EMCI) and 
late MCI (LMCI) group, three of the four states still show similar gra-
dually changing patterns on their occurrence (increase or decrease, 
from HC to EMCI to LMCI to AD) (Fig. 9, bottom panel). 

3.3.4. Study 4: Functional network features captured by the NeuroMark 
serve as reliable biomarkers for classifying bipolar disorder (BD) and major 
depressive disorder (MDD) 

Our results show that the functional networks (i.e. ICNs) estimated 
by NeuroMark can serve as reliable biomarkers for separating BD and 
MDD. As shown in Fig. 10, the mean overall classification accuracy is 
91.3%, the mean balanced accuracy is 91.2%, and the mean balanced 
precision is 91.5%. The individual-class accuracy for the BD group is 
88.7% (precision is 93.8%), while the individual-class accuracy for 
MDD is 93.3% (precision is 90.0%). Importantly, we observed that 
some functional networks represented by IC 56, IC 33, IC 40, IC 98, IC 
80, and IC 20 were frequently selected as features in all cross-validation 

runs (Fig. 11), which might suggest that they play a key role in se-
parating BD and MDD. These functional networks engaged middle 
temporal gyrus, insula, precuneus, putamen, superior parietal lobule, 
and inferior occipital gyrus. 

4. Discussion 

The current diagnosis of brain disorders overwhelmingly relies on 
the patterns of clinical symptoms. Neuroimaging measures may hold 
more objective, biology-based quantification of brain abnormalities and 
consequently serve as potential biomarkers to guide diagnosis and 
treatment. However, the human brain is highly complex and the neu-
roimaging signals are confounded by various noises. This requires the 
neuroscience community to analyze big-data samples that might be 
assembled from multi-site studies to achieve enough statistical power 
for capturing more reliable findings. Studying the brain alterations in 
multiple brain disorders via using neuroimaging data collected from 
different studies would advance our understanding of their underlying 
mechanisms and relationships, which might help to redefine the dis-
order categories or develop new subtypes (Marquand et al., 2016; Du 
et al., 2018). 

Functional connectivity, which evaluates the interaction of spatially 
distributed brain regions, has been suggested to be associated with 
cognition and many mental activities (Bressler and Menon, 2010). 
Studies of functional connectivity also improve the understanding of 

Fig. 5. Correspondence between the HCP and GSP datasets. (A) The number of matched components with the correlation  >  0.4, > 0.5, > 0.6, > 0.7, > 0.8, 
and  >  0.9, respectively. (B) The number of matched meaningful networks with the correlation  >  0.4, > 0.5, > 0.6, > 0.7, > 0.8, and  >  0.9, respectively, in 
which the correlation was computed using the whole-brain voxels. (C) The number of matched meaningful networks with the correlation  >  0.4, > 0.5, > 0.6, >  
0.7, > 0.8, and  >  0.9, respectively, in which the correlation was computed only using the important voxels with positive Z-scores. Note: corr means correlation. 
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functional alterations caused by brain disorders (Sheline et al., 2009; 
Öngür et al., 2010; Xia et al., 2019). ICA is a promising method that can 
be used to extract functional connectivity measures (Calhoun et al., 
2001; Allen et al., 2014), like intra-network connectivity (spatial maps 
of ICNs) and inter-network connectivity (functional network con-
nectivity). Compared with ROI-based analysis, ICA is capable of ex-
tracting functional connectivity features that retain more individual- 
level variability (Yu et al., 2017), which might provide more statistical 
power benefiting the analysis of cross-disorders brain abnormalities. 
However, ICA is a data-driven approach which might result in different 
components identified across data. Such inconsistency of identified 
components and their arrangements may hinder finding replication and 
cross-study comparison. 

To address this issue, we proposed the NeuroMark pipeline, a priori- 
driven ICA informed by reliable network templates to achieve linked 
analyses among different datasets, studies, and disorders. In this pipe-
line, the network templates were first generated using two large-sample 
HC populations (including 1828 subjects) in order to automatically 
maintain inter-subject correspondence of networks. The use of such 
prior information can greatly reduce the search space and improve the 
likelihood of detecting useful biomarkers (Cohen et al., 2017). Then, 
subject-specific ICNs and TCs were estimated based on the network 
templates, and this procedure would not only maintain the correspon-
dence of extracted networks but also achieve more individual variances 
by optimizing the subject-specific network independence (Lin et al., 
2010; Du and Fan, 2013). 

To assess the efficacy of NeuroMark, we performed four studies 
including six different brain disorders. The performance of NeuroMark 
was evaluated from different angles. The overall results clearly support 
that NeuroMark is capable of capturing functional connectivity ab-
normalities that can be replicated across datasets and can be compared 
across brain disorders. NeuroMark also shows promising ability in 
characterizing atypical dynamic functional connectivity features across 

progressively developing disorders. More importantly, the functional 
connectivity features extracted by NeuroMark can serve as reliable 
biomarkers that can be used for the classification of brain disorders. 

In study 1, by using the NeuroMark pipeline, we explored the 
whole-brain sFNC abnormalities in two independent SZ datasets. 
Similar abnormalities in sFNC were observed across datasets, mainly 
involving the subcortical, sensory, and cerebellar networks. 
Specifically, SZ shows increased sFNC between subcortical networks 
(including thalamus and caudate) and sensory networks. Being vali-
dated across datasets, these findings are consistent with and sig-
nificantly extend previous reports about hyperconnectivity between 
subcortical and sensory regions using both atlas-based and ICA ap-
proaches (Woodward et al., 2012; Anticevic et al., 2014; Damaraju 
et al., 2014a, 2014b; Fu et al., 2018a, 2018b). For example, Woodward 
et al. have shown that SZ exhibits increased connectivity between 
thalamus and somatosensory regions by evaluating the connectivity 
between thalamic region and the other cortical regions (Woodward 
et al., 2012). Chen et al. (2019) revealed that thalamic hy-
perconnectivity with sensorimotor areas is related to the severity of 
cognitive deficits and clinical symptoms in SZ. Studies using ICA also 
reveal that increased strengths of FNC between subcortical and sensory 
networks in SZ patients from both static and dynamic perspectives 
(Damaraju et al., 2014a, 2014b). The subcortical regions are important 
sensory gates that receive and deliver information to the cortical re-
gions, supporting the basic brain functions and behaviors. The thalamus 
is known for its important roles in visual, auditory, motor activity, 
emotion, memory, and sensorimotor association functions, and the 
caudate nucleus integrates spatial information with motor behavior 
formulation. Considering the negative functional connectivity between 
subcortical and sensory regions in our results, our observed increased 
sFNC in SZ might indicate dysfunctional connectivity between those 
regions. Such disconnection between subcortical and sensory regions 
would influence the information flow in the SZ brain, which might 

Table 2 
Information of the extracted network templates. For each template, its functional domain, primary brain region and peak coordinate are included. Here, each network 
template is represented by one independent component (IC). IC ID is shown along with the brain region name.          

Primary regions in ICNs (IC ID) X Y Z Primary regions in ICNs (IC ID) X Y Z  

Sub-cortical domain (SC) Cognitive-control domain (CC) 
Caudate (IC 69) 6.5  10.5  5.5 Inferior parietal lobule ([IPL], IC 68)  45.5 −61.5  43.5 
Subthalamus/hypothalamus (IC 53) −2.5  −13.5  −1.5 Insula (IC 33)  −30.5 22.5  −3.5 
Putamen (IC 98) −26.5  1.5  −0.5 Superior medial frontal gyrus ([SMFG], IC 43)  −0.5 50.5  29.5 
Caudate (IC 99) 21.5  10.5  −3.5 Inferior frontal gyrus ([IFG], IC 70)  −48.5 34.5  −0.5 
Thalamus (IC 45) −12.5  −18.5  11.5 Right inferior frontal gyrus ([R IFG], IC 61)  53.5 22.5  13.5 
Auditory domain (AU) Middle frontal gyrus ([MiFG], IC 55)  −41.5  19.5  26.5 
Superior temporal gyrus ([STG], IC 21) 62.5  –22.5  7.5 Inferior parietal lobule ([IPL], IC 63)  −53.5 −49.5  43.5 
Middle temporal gyrus ([MTG], IC 56) −42.5  −6.5  10.5 Left inferior parietal lobue ([R IPL], IC 79)  44.5 −34.5  46.5 
Sensorimotor domain (SM) Supplementary motor area ([SMA], IC 84)  −6.5  13.5  64.5 
Postcentral gyrus ([PoCG], IC 3) 56.5  −4.5  28.5 Superior frontal gyrus ([SFG], IC 96)  −24.5 26.5  49.5 
Left postcentral gyrus ([L PoCG], IC 9) −38.5  –22.5  56.5 Middle frontal gyrus ([MiFG], IC 88)  30.5 41.5  28.5 
Paracentral lobule ([ParaCL], IC 2) 0.5  –22.5  65.5 Hippocampus ([HiPP], IC 48)  23.5 −9.5  −16.5 
Right postcentral gyrus ([R PoCG], IC 11) 38.5  −19.5  55.5 Left inferior parietal lobue ([L IPL], IC 81)  45.5 −61.5  43.5 
Superior parietal lobule ([SPL], IC 27) −18.5  −43.5  65.5 Middle cingulate cortex ([MCC], IC 37)  −15.5 20.5  37.5 
Paracentral lobule ([ParaCL], IC 54) −18.5  −9.5  56.5 Inferior frontal gyrus ([IFG], IC 67)  39.5 44.5  −0.5 
Precentral gyrus ([PreCG], IC 66) −42.5  −7.5  46.5 Middle frontal gyrus ([MiFG], IC 38)  −26.5 47.5  5.5 
Superior parietal lobule ([SPL], IC 80) 20.5  −63.5  58.5 Hippocampus ([HiPP], IC 83)  −24.5 −36.5  1.5 
Postcentral gyrus ([PoCG], IC 72) −47.5  −27.5  43.5 Default-mode domain (DM) 
Visual domain (VI) Precuneus (IC 32)  −8.5  −66.5  35.5 
Calcarine gyrus ([CalcarineG], IC 16) −12.5  −66.5  8.5 Precuneus (IC 40)  −12.5 −54.5  14.5 
Middle occipital gyrus ([MOG], IC 5) –23.5  −93.5  −0.5 Anterior cingulate cortex ([ACC], IC 23)  −2.5 35.5  2.5 
Middle temporal gyrus ([MTG], IC 62) 48.5  −60.5  10.5 Posterior cingulate cortex ([PCC], IC 71)  −5.5 −28.5  26.5 
Cuneus (IC 15) 15.5  −91.5  22.5 Anterior cingulate cortex ([ACC], IC 17)  −9.5 46.5  −10.5 
Right middle occipital gyrus ([R MOG], IC 12) 38.5  −73.5  6.5 Precuneus (IC 51)  −0.5 −48.5  49.5 
Fusiform gyrus (IC 93) 29.5  −42.5  −12.5 Posterior cingulate cortex ([PCC], IC 94)  −2.5 54.5  31.5 
Inferior occipital gyrus ([IOG], IC 20) −36.5  −76.5  −4.5 Cerebellar domain (CB) 
Lingual gyrus ([LingualG], IC 8) −8.5  −81.5  −4.5 Cerebellum ([CB], IC 13)  −30.5 −54.5  −42.5 
Middle temporal gyrus ([MTG], IC 77) −44.5  −57.5  −7.5 Cerebellum ([CB], IC 18)  –32.5 −79.5  −37.5  

Cerebellum ([CB], IC 4)  20.5  −48.5  −40.5 
Cerebellum ([CB], IC 7)  30.5  −63.5  −40.5 
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further result in cognitive deficits and other clinical symptoms in SZ. 
We observed replicated decreased sFNC between subcortical networks 
and cerebellum, which are also in line with previous findings 
(Andreasen et al., 1998; Anticevic et al., 2014). Using a large sample of 
SZ patients, Anticevic et al. found hypoconnectivity between the 

thalamus and cerebellar regions in patients (Anticevic et al., 2014). 
Although cerebellum has been previously viewed as a key node of 
motor coordination, more and more documents show that it would 
participate in a broad range of cognitive functions in humans (Buckner, 
2013). Recent studies using large-scale neuroimaging data have 

Fig. 6. The correspondence and uniqueness of the subject-specific ICNs. Similarity between the network templates and subject-specific ICNs is shown in (A) for all 
subjects in each dataset (e.g. FBIRN) and (B) for the subjects in each group of dataset (e.g. FBIRN-SZ), using boxplots. In (A) and (B), each sample in the boxplots 
denotes the template-ICN similarity of one subject. Similarity across the subject-specific ICNs is shown in (C) for all subjects in each dataset and (D) for the subjects in 
each group of dataset, using bars. In (C) and (D), the inter-subject ICN similarity is shown using a bar. Note: the correlations were computed based on the whole-brain 
voxels. 

Y. Du, et al.   NeuroImage: Clinical 28 (2020) 102375

12



documented the potential associations between the structure and 
function of the cerebellum and schizophrenia (Cao and Cannon, 2019). 
Our results provide additional evidence supporting that the cerebellar 
dysfunction, especially the dysfunction in cortical-subcortical-cere-
bellar circuitry involved in the pathogenesis of schizophrenia (Cao and 
Cannon, 2019). Overall, the results of study 1 highlight the potential of 
NeuroMark as a tool for capturing reproducible connectivity changes. 

In study 2, the NeuroMark pipeline was applied to an open source 
data for studying the sFNC abnormalities in ASD. With the help of 
NeuroMark, the extracted ICNs not only retained subject-specific 
variability but also had the same order and arrangement as that in the 

study 1, making it feasible to compare the results from two independent 
studies. Combining their results, we found that subcortical networks 
were significantly affected by both SZ and ASD. Similar to SZ, decreased 
sFNC between cerebellum and thalamus/caudate and increased sFNC 
between thalamus and superior temporal gyrus/postcentral gyrus were 
identified in ASD. One previous study (Cerliani et al., 2015) using ICA- 
based fMRI analysis also showed increased connectivity between net-
works encompassing thalamus with the sensorimotor networks in ASD. 
Indeed, the disruption of subcortical-cortical brain connectivity, espe-
cially between thalamic and sensory regions has been widely docu-
mented in literature (Minshew and Keller, 2010; Fu et al., 2019). The 

Fig. 7. Results of study 1, which shows that there are reproducible sFNC alterations of SZ between the FBIRN and MPRC datasets. (A) and (D): Mean sFNC matrices 
across all subjects for the FBIRN and MPRC datasets, respectively. (B) and (E): T-values of all sFNCs obtained from two-sample t-tests for FBIRN and MPRC, 
respectively. (C) and (F): T-values for the sFNCs passing the multiple comparisons correction (p  <  0.05 with Bonferroni correction) for FBIRN and MPRC, re-
spectively. “BFN” denotes Bonferroni correction. (G): Mean sFNC strength across subjects for the HC and SZ groups in the common impairments between FBIRN and 
MPRC data. For each commonly changed sFNC, the averaged values in SZ patients of FBIRN dataset, SZ patients of MPRC dataset, and HCs of the two datasets are 
shown, respectively. 
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broken connection between thalamus and the cortical regions is sug-
gested to a potential cause of the atypical sensory processing in ASD (Fu 
et al., 2019). Our results indicate that atypical thalamic-to-cortical 
connectivity in SZ and ASD might underlie the same impairments of 
cerebello-thalamo-cortical pathways in both diseases (Andreasen et al., 
1998; Bailey et al., 1998). While our findings are consistent with pre-
vious work, this paper directly shows, for the first time, the overlap 
between SZ and ASD with respect to these changes. Besides those 
common sFNC abnormalities, we found that ASD also showed unique 

changes on sFNC involving the cognitive-control and default mode 
domains. Our results are in line with the abnormal functional con-
nectivity which is observed both within the DMN and between the DMN 
and networks involved in higher cognitive processing (de Lacy et al., 
2017). Another dynamic functional connectivity study found that 
children with ASD diagnoses spend less time in the dynamic state with 
strong DMN connectivity, which might result in overall decreased DMN 
connectivity, aligned with our findings (Rashid et al., 2018). SZ and 
ASD are currently conceptualized as distinct disorders, however there is 

Fig. 8. Results of study 2, which supports that SZ and ASD show common alterations in sFNC. (A): Mean sFNC pattern across all subjects for ABIDEI. (B) and (C): T- 
values of all sFNCs and T-values of the sFNCs passing the multiple comparisons correction (p  <  0.05 with Bonferroni correction), obtained from two-sample t-tests 
of HC vs. ASD for ABIDEI. “BFN” denotes Bonferroni correction. (D): Mean sFNC strength of each group (ASD, SZ and HC) in the common impairments between SZ 
and ASD. For each commonly impaired sFNC, the averaged connectivity values in ASD patients of ABIDEI, SZ patients of FBIRN and MPRC, and HCs of the three 
datasets are shown, respectively. (E) and (F): The significant correlations (r and p values) between FNC measures and clinical symptoms, with p  <  0.05. The T-value 
from testing group difference between HC and disorder by two-sample t-test is also included in each subfigure. Taking (F) for an instance, it shows the correlation 
between FNC measure (corresponding to IC 69 and IC 21) and ADOS score in ASD patients. The T-value of FNC measure from two-sample t-test between HC and ASD 
is also shown in the title part. 
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overlap in symptoms such as social withdrawal and communication 
impairment (Ford et al., 2017). Historically, schizophrenia and autism 
were even once considered to be the same disorder expressed at dif-
ferent developmental periods. The exploration of common and unique 
brain changes in SZ and ASD using a standardized pipeline like Neu-
roMark would help to advance our understanding of the neuronal re-
lationship between these clinically-overlapping diseases and provide 
biological evidence hinting at their possible underlying mechanisms. 

The human brain is highly dynamic system that spontaneous brain 
activity and connectivity is rich with dynamic properties (Leonardi and 
Van De Ville, 2015). Increasing evidence has shown that the research 
into dynamic functional connectivity would provide more information 
on brain functions and organization that cannot be probed by its static 
counterpart (Chang and Glover, 2010). The study of dynamic functional 
connectivity also improves the understanding of impaired brain and the 
functional alterations caused by brain disorders (Du et al., 2016). In 
study 3, we tested the performance of NeuroMark on capturing dynamic 
functional connectivity features from large scale imaging data. Via the 

NeuroMark framework, the atypical dFNCs were studied on brain dis-
orders which manifest symptom severity along a continuous spectrum 
(MCI to AD). Five states with highly variable connectivity patterns were 
identified, demonstrating the flexibility in the functional coordination 
between brain networks during the resting state. Compared to HCs, AD 
patients exhibited more occurrence in weakly-connected states but 
fewer occurrence in strongly-connected states, consistent with our 
previous findings observed from another independent data (Fu et al., 
2019). We speculate that the increased occurrence in the weakly-con-
nected states but decreased occurrence in the strongly-connected states 
would result in disrupted inter-region communication which influences 
the maintenance of the basic brain functions in dementia brain. Similar 
observations were found in other brain disorders, including bipolar 
disorder (Rashid et al., 2014), schizophrenia (Damaraju et al., 2014a, 
2014b; Du et al., 2016), and autism (Fu et al., 2018a, 2018b). Inter-
estingly, we observed that MCI showed similar changing trends as AD, 
with a weaker degree than AD. MCI is suggested to be an intermediate 
stage between HC and AD and our results demonstrate that the 

Fig. 9. Results of study 3. The results revealed gradually changing patterns from healthy controls (HCs) to early mild cognitive impairment (EMCI) to late MCI (LMCI) 
to Alzheimer’s disease (AD), measured by dynamic functional network connectivity (dFNC) measures. Upper: Group differences in the fraction rate of occurrences of 
dFNC states among HC, MCI, and AD. Middle: The discriminating dFNC states, along with the count of subjects that have at least one window clustered into the state. 
Bottom: Group differences in the fraction rate of occurrences of dFNC states among HC, EMCI, LMCI, and AD. Regarding the fraction rate of occurrences in each state, 
bar and error bar represent the mean and the standard error of mean, respectively. Significant group differences (false discovery rate corrected, q = 0.05) are 
indicated by asterisks. 
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biological changes in MCI also show an intermediate condition between 
HC and AD. We further divided the MCI group into EMCI and LMCI, 
such phenomenon can also be observed in the dynamic features from 
HC to EMCI to LMCI to AD, suggesting a continual change in neuro-
degenerative diseases. The converging results of study 3 show that 
NeuroMark is an effective framework that can capture subtle dFNC 
differences that help to characterize progression in cognitive impair-
ment in dementia. 

In study 4, we tested whether the functional connectivity features 

captured by NeuroMark can serve as reliable biomarkers that help to 
distinguish different disease groups. The spatial maps of the ICNs ex-
tracted via NeuroMark were used as the input in the classification of BD 
and MDD patients, who have highly overlapping depressive symptoms 
and usually are difficult to be separated in clinical practice. We 
achieved > 90% overall accuracy and balance accuracy, which are 
comparable with previous work that tried to distinguish BD and MDD 
(Jie et al., 2015; Osuch et al., 2018). However, Osuch et al. performed 
component decomposition using all the MDD and BD data, which makes 

Fig. 10. Results of study 4. The evaluated measures included individual-class accuracy of bipolar disorder (BD) and major depressive disorder (MDD) (BD_acc and 
MDD_acc), individual-class precision (BD_prec and MDD_prec), overall accuracy (Overall_acc), balanced accuracy (Bala_acc), and balanced precision (Bala_prec). For 
each measure, we show the values from 100 classification runs using both boxplot and violinplot, respectively. 

Fig. 11. Spatial maps of six most discriminative ICNs, each of which was selected from one functional domain (i.e., SC, AU, SM, VI, CC, and DM).  
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them difficult to extend their findings on the new coming subjects or on 
another independent data. Our results suggest that although the use of 
functional network features and sophisticated classification algorithms 
is not practical in routine clinical due to the difficulty to implement the 
approaches to the new coming data, the NeuroMark framework might 
help to overcome this. Our results also indicate that the most important 
regions that help to discriminate BD and MDD are middle temporal 
gyrus, insula, precuneus, putamen, superior parietal gyrus, and inferior 
occipital gyrus. The abnormalities in these regions have been widely 
reported in MDD (Wang et al., 2012; Peng et al., 2015; Schreiner et al., 
2019) or BD (Favre et al., 2014) literature. Our results argue that al-
though these regions shows atypical patterns in both MDD and BD, their 
abnormalities may pertain to the different pathophysiology of mood 
disorders and may be particularly helpful for separating patients with 
challenging mood diagnoses. 

Although NeuroMark shows great promise on extracting compar-
able and reproducible functional connectivity abnormalities that can 
serve as valuable markers across brain disorders, one limitation is that 
the present network templates were obtained only based on two in-
dependent HC datasets. The templates can be progressively improved 
and refined as more datasets collected under different conditions are 
included, hopefully to generate functional network templates with 
greater reproducibility. Since matching group-level networks across 
multiple groups is difficult, an efficient matching technique will be 
needed in order to find the highly reproducible (matched) networks as 
templates. In addition, the network templates were estimated using a 
higher model-order (the number of ICs = 100). In future, we will ex-
plore network estimation at different parcellation levels. Considering 
the ability to link different datasets, studies, and disorders in our 
method, we also plan to provide a cloud computation platform that 
implements this approach. Our hope is that by using NeuroMark, 
functional connectivity features can be widely studied and compared 
among numerous brain disorders. In this paper, we did not compare the 
NeuroMark with other pipelines (such as other group ICA and ROI 
methods) in the four studies, because we are more interested in the 
application of the proposed pipeline in a broad range. However, our 
previous studies (Du and Fan, 2013; Du et al., 2016; Salman et al., 
2019) have shown the superiority of the core of NeuroMark (i.e. GIG- 
ICA) in its powerful capability of estimating individual networks. In this 
work, we validated that the unique property of network features can be 
captured in NeuroMark while the correspondence between the network 
templates and individual ICNs is well maintained. We also found that 
the template-ICN similarity is relatively stable across different datasets 
and populations (as shown in the section 3.2). Furthermore, we also 
investigated the correlation between the network templates and the 
subject-specific ICNs across groups with different age and head motion 
parameters. As shown in the supplementary section S4, our results in-
dicate that age and head motion did not greatly influence the corre-
spondence measure. We wanted to point out that in this work we 
carefully regressed out the age, gender, and site effects before the sta-
tistical analyses (see the section S3) and handled the motion in the 
preprocessing and FNC computation steps, which minimized the con-
tamination of these effects on the group differences. 

We also wanted to mention that in this paper we identified the 
group differences under the guidance of diagnosis labels in studies 1–3 
and classifying different subjects using models and features obtained by 
believing in the class labels in study 4. Our work accords with most of 
previous studies in the neuroscience field (Du et al., 2018), however, it 
is obvious that the diagnosis labels could be inaccurate. Refining mental 
disorder categories with the help of neuroimaging technique has at-
tracted a lot of interests (Insel et al., 2010; Cuthbert and Insel, 2013; 
Fusar-Poli et al., 2019), and unsupervised or semi-supervised clustering 
is the mostly popular method to solve the regrouping problem 
(Marquand et al., 2016). The biggest difficulty is to select good mea-
sures which can reflect subject-unique characteristics while still be 
corresponding across subjects for being used as features in clustering, 

under the situation of lack of group label information. We believe that 
NeuroMark helps to facilitate this issue, as our studies support that 
subtle data variation can be captured and linking of data can be easily 
achieved by NeuroMark. 

Although the current NeuroMark framework was only applied for 
the analysis of fMRI datasets, it can also be expanded to other mod-
alities. Taking structural MRI for example, source-based morphometry 
(SBM) (Xu et al., 2009; Bergsland et al., 2018), a multivariate version of 
voxel-based morphometry (VBM), applies ICA to gray matter maps to 
detect common covariation among subjects and subject-associated 
weights. It is apparent that results of SBM vary across different datasets 
and runs. Using our method taking reliable priors as guidance, the 
covariation patterns can be linked, thus resulting in comparable 
weights as features across different data (see regression based example 
here (Silva et al., 2014)). Group ICA is also useful for analyzing elec-
troencephalography (EEG) data. Previous studies (Huster et al., 2015; 
Huster and Raud, 2018) extracted EEG sources by concatenating the 
data across the spatial dimension (see also the EEGIFT software: http:// 
trendscenter.org/software). Generating a priori sources to guide the 
individual source computation in different modalities will be an on-
going effort. 

In summary, we proposed an ICA-based framework to generalize 
and standardize the calculation of possible functional connectivity 
features that leverages the benefits of a data-driven approach and also 
provides comparability across multiple analyses. Via four different ex-
ample studies, we highlight the validity of this framework. We hope this 
will be a useful stepping stone towards eventual application of such 
approaches in the clinic. 
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